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ABSTRACT 

 

This study uses spatial econometrics techniques within Fortaleza's 
municipality to address the real estate mass appraisal of urban lands. It 
utilizes spatial weight matrices, Lagrange multiplier tests, and spatial 
regression models to comprehend and model the spatial structure of land 
prices. The findings highlight the critical role of careful selection of spatial 
weight matrices in reducing residual autocorrelation and enhancing 
estimation accuracy. Moreover, employing homogenization factors based on 
a paradigm lot proved effective in adjusting land prices, aiding in more 
equitable taxation, and reflecting price variations due to locational factors. 
The study's specific objectives include evaluating the influence of spatial 
weight matrices' choice, analyzing the effectiveness of spatial models in 
capturing spatial dependence, and investigating the impact of price 
homogenization. The study also outlines methodological limitations such as 
reliance on georeferenced data and the assumption that land attributes 
uniformly impact prices across different city areas.   

 
Keywords: Real estate mass appraisal; Homogenization factors; Spatial 
regression. 

 
RESUMO 

 

Este estudo aborda a avaliação em massa de terrenos urbanos utilizando 
técnicas de econometria espacial no contexto do município de Fortaleza. A 
metodologia emprega matrizes de pesos espaciais, testes de 
multiplicadores de Lagrange e modelos de regressão espacial para 
entender e modelar a estrutura espacial dos preços dos terrenos. Os 
resultados indicam que a seleção cuidadosa das matrizes de pesos 
espaciais é fundamental para reduzir a autocorrelação residual e melhorar a 
precisão das estimativas. Além disso, a aplicação de fatores de 
homogeneização baseados em um lote paradigma demonstrou ser uma 
abordagem eficaz para ajustar os preços dos terrenos, contribuindo para 
uma tributação mais equitativa e refletindo variações de preços devido a 
fatores locacionais. Os objetivos específicos do estudo incluem avaliar a 
influência da escolha das matrizes de pesos espaciais, analisar a eficácia 
dos modelos espaciais na modelagem da dependência espacial e investigar 
o impacto da homogeneização dos preços. Este trabalho também discute 
as limitações da metodologia, como a dependência de dados 
georreferenciados e a premissa de que os atributos dos terrenos impactam 
uniformemente os preços em diferentes áreas da cidade. 

 
Palavras-Chave: Avaliação em massa; Fatores de homogeneização; 
Regressão espacial. 
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1. INTRODUCTION 

 

Mass real estate appraisal techniques have undergone numerous transformations in recent decades. 

These changes are driven by the increased availability and ease of obtaining property characteristics and 

price data sourced from real estate buying and selling portals, market observatories maintained by public 

and private entities, and massive georeferenced property registration conducted in Brazilian municipalities. 

Through Geographic Information Systems (GIS), other variables and data sources, including cadastral maps, 

satellite images, unmanned aerial vehicles (UAVs), 360º terrestrial imaging, socioeconomic data, and urban 

planning information, among others, can be integrated, enabling the identification of patterns, trends, and 

spatial relationships that impact property prices. Additionally, the advancement of algorithms in spatial 

econometrics, geostatistics, and, more recently, machine learning—a subfield of artificial intelligence—has 

significantly contributed to improving these appraisal methods. 

Despite these advances and the breadth of analytical techniques available, the treatment of data by 

factors is still widely used in mass real estate appraisal, especially for tax purposes in preparing general 

property value maps (PVG) in almost all Brazilian municipalities. This is due, among other reasons, to the 

ease of developing and applying the method, its transparency, and its explanatory power for those subject to 

the tax incidence. On the other hand, the indiscriminate use of this approach, applying factors imported from 

the classical national literature devoid of any underlying scientific methodology, can cause severe distortions 

in assessed values, leading to inequities in property taxation. 

Moreover, it is crucial to consider the spatial structure of property prices and attributes in global models. 

Ignoring this can lead to errors in the magnitude and significance of the coefficients, especially in areas with 

strong spatial autocorrelation. As seen below, classical regression assumptions are not met in the presence 

of spatial dependence and/or spatial heterogeneity. These effects are inherent to the behavior of property 

market prices, as evidenced in numerous studies. The urgency of addressing this issue cannot be overstated. 

In this context, this study aims to propose a scientific methodology for the mass appraisal of urban land 

through the spatial econometric approach and subsequent extraction of homogenization factors, making it 

replicable to other municipalities. The specific objectives include (1) evaluating the influence of the choice of 

spatial weight matrices in capturing and modeling spatial dependence; (2) analyzing the effectiveness of 

spatial regression models (SAR, SEM, and SAC) in reducing residual autocorrelation and improving price 

estimate accuracy; (3) investigating the impact of land price homogenization using homogenization factors 

derived from the most appropriate spatial model, and evaluating their representativeness and applicability in 

different regions of the municipality. 

This article is organized as follows: in the Literature Review section, we analyze the primary studies on 

mass real estate appraisals with a spatial approach in Brazil and South America. Next, in the Theoretical 

Framework, we detail the theories and spatial econometric models that underpin the research, including the 

definitions of key concepts such as spatial dependence, spatial heterogeneity, spatial weight matrices, 

detection of spatial autocorrelation, and other related concepts. The Methodology section describes the 

sample used, the methods for specifying and choosing the spatial weight matrices, and the flowchart for 

analyzing the most appropriate spatial model according to the methodology of Anselin and Rey (2014). The 

Results are presented in the fourth section, followed by the Discussion, in which we interpret the findings in 

light of the reviewed literature. Finally, in the Conclusion, we summarize the main findings, discuss the 

study's limitations, and suggest directions for future research. 

 

2. LITERATURE REVIEW 

 

Dantas et al. (2003), in a pioneering study on spatial econometrics applied to property appraisal in 

Brazil, demonstrated the necessity of considering the spatial autocorrelation present in real estate market 

data. The study sample comprised 59 market data of apartments located in four neighborhoods in the 

central-western region of Recife. The authors stated that not considering the spatial dependence in the data 

can lead to biased, inconsistent, and inefficient results. Moreover, they identified that spatial autocorrelation 

in the residuals is related to (i) measurement errors caused by artificial divisions of geographical units, such 

as neighborhood boundaries that do not necessarily coincide with the actual dimension of the observed 

phenomenon, and (ii) the omission of relevant locational variables (model specification error). 

Dantas (2008) applied spatial econometric models to analyze the housing market in Recife using a 

sample of 232 apartments financed by CAIXA, collected between June 2000 and June 2002, distributed 

across 36 neighborhoods. The spatial weight matrix used in the study was based on the inverse distance 
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between buildings. The influence between properties was weighted according to this metric, and the matrix 

was row-standardized to facilitate the interpretation of weights as a weighted average of the neighbors' 

values. The study concluded that there is a strong presence of spatial dependence in property prices, 

demonstrating the need to use spatial econometric models to obtain more accurate and consistent 

estimates. The analysis showed that locational and structural characteristics and neighborhood spatial 

interaction effects influence property prices. 

The article "Engineering Evaluations Based on GAMLSS Models" by Florêncio (2010) used a sample of 

2,109 urban land observations in Aracaju, covering 2005, 2006, and 2007. The study's main objective was to 

estimate the hedonic price function using the class of GAMLSS (Generalized Additive Models for Location, 

Scale, and Shape) regression models. According to graphical and numerical residual analyses and Akaike 

and Schwarz criteria, the results showed that GAMLSS models provided a superior fit compared to traditional 

classical linear regression and generalized linear models (GLM). The study concluded that the GAMLSS 

model class is more appropriate for estimating the parameters of the hedonic price function due to its 

flexibility and ability to fit a broad family of distributions for the response variable. 

Campos and Almeida (2018) used hierarchical models that considered spatial effects on a sample of 

9,682 apartment launches in São Paulo between January 1985 and July 2012. The authors concluded that 

property sale prices are influenced both by intrinsic property characteristics and by neighborhood and 

adjacency effects. According to them, spatial hierarchical models allow for a more robust analysis of property 

price variations, requiring control for the spatial dependence of the data and the spatial heterogeneity of 

amenities among the city's districts and their spillover effects. 

Bandeira (2020) compared results from the classical regression model with those of a spatial model 

using land plots in Fortaleza as the study object. A sample of 914 data points was used for model estimation, 

and another validation sample was used for 423 observations. The methodology followed by the author 

indicated the spatial lag model as the most suitable, using a spatial weight matrix weighted by the inverse of 

the squared Euclidean distance between observations. The author concluded that, although the estimated 

unit values were similar, there were specification errors in the classical model. 

The article "Mass Appraisal Using Generalized Additive Models and Geostatistics" (OLIVEIRA; 

OLIVEIRA; BANDEIRA, 2020) used a sample of 1,924 urban land data from Fortaleza. The main objective 

was to develop a methodology for mass property appraisal using Generalized Additive Models (GAM) 

combined with geostatistics techniques to improve the accuracy of appraisals for tax purposes. The results 

confirmed hypotheses about real estate market price behavior, such as the increase in unit value of land 

located in gated communities, with available water networks, and located on paved roads. However, 

incorporating land coordinates into the GAM model was insufficient to eliminate the spatial autocorrelation of 

residuals, requiring the application of a spherical variogram and ordinary kriging interpolation of the 

residuals. It was concluded that the proposed methodology is promising but should be used cautiously due 

to potential measurement errors in market data collection. 

Zilli and Hochheim (2023) used global spatial regression models (CAR) and geographically weighted 

regression models (GWR) to address spatial dependence and heterogeneity in mass property appraisal. The 

sample consisted of 225 market data of urban properties in the Centro, Agronômica, and Trindade 

neighborhoods in Florianópolis, Santa Catarina, Brazil, collected between March and April 2020. The main 

conclusions indicated that the GWR model outperforms the conditional autoregressive (CAR) model in terms 

of accuracy and ability to consider spatial dependence and heterogeneity, standing out as a viable alternative 

for establishing a fair and equitable basis for property tax calculation. 

Oliveira et al. (2023) made a significant contribution to the field of mass property appraisal by analyzing 

the selection of spatial weight matrices in spatial econometric models. They aimed to capture the maximum 

observed spatial dependence, thereby enhancing the quality of final appraisals. Their study, which utilized a 

sample of 3,580 house price data points in Aracaju, revealed the spatial dependence of prices and residuals 

from the classical linear regression model. The authors' key finding was that distance-based spatial weight 

matrices lead to better model fits, as they more effectively incorporate spatial dependence and yield superior 

results in AIC and root mean square error (RMSE) criteria. 

In South America, the work of Cerino et al. (2022) stands out, where spatial econometrics was also 

used to develop a scientific methodology to replace the traditional homogenization tables with factors used in 

Argentina since 1939. The sample consisted of 1,033 land data collected in the Province of Córdoba through 

the local Real Estate Market Observatory (OMI) from 2018 to 2020, including transfer tax data. Outliers were 

eliminated, especially in the case of under declarations of this tax, through local Moran index analysis. The 
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chosen spatial weight matrix was of the inverse Euclidean distance type between observations with a 

contagion radius of up to 500m. Lagrange multiplier tests confirmed the existence of spatial autocorrelation 

in the residuals and the dependent variable, leading to the choice of a combined spatial autocorrelation 

model (Spatial Autoregressive Combined – SAC). The marginal effects of each variable of interest on the 

observed unit price were estimated with the composition (sum) of direct and indirect effects, the latter arising 

from the spatial dependence structure itself, as will be detailed in the following sections of this article. Thus, 

the total effect calculated a unique homogenization factor relative to a paradigm lot with 19m frontage and 

562m² area. Finally, the authors used the proposed methodology to redesign the mass appraisal of land 

value throughout the Province of Córdoba. 

 

3. THEORETICAL FRAMEWORK 

 

3.1. SPATIAL REGRESSION AS AN ALTERNATIVE TO CLASSICAL REGRESSION IN MASS APPRAISALS 

 

Like many other economic and social phenomena, the distribution of prices in the real estate market is 

influenced by spatial proximity effects. In mass real estate appraisal, these effects cannot be ignored, 

considering that the main objective is to assess many properties within a geographical context that presents 

significant spatial interactions. Although hedonic price models have been successful since Rosen's (1974) 

work, which attempts to explain an individual's choice by seeking maximum satisfaction from a particular 

"bundle of attributes" present in a property influencing their purchase decision, this paradigm of an isolated 

and atomized economic agent (GOLGHER, 2015), which considers only the individual and intrinsic 

characteristics of each property, must be overcome when studying mass appraisals. 

Property prices are highly influenced by neighborhood aspects and economic externalities, both positive 

and negative, that propagate beyond the traditional boundaries of study units considered in classical models. 

Neighborhood aspects relate to the concept of spatial dependence (or spatial autocorrelation), and 

externalities relate to the idea of spatial heterogeneity, both definitions being species of the genus "spatial 

effects" according to Almeida (2012). 

The existence of spatial dependence observed in the real estate market has its first explanation in the 

well-known "First Law of Geography" (TOBLER, 1970), according to which geographically closer individuals 

tend to behave more similarly than those who are further apart (ALMEIDA, 2012). This can occur in both the 

observed property prices and the explanatory variables, as well as in the residuals resulting from the 

application of classical regression models. The dependence on the prices of geographically proximate 

properties and their intrinsic characteristics can be intuitively explained because these properties share the 

same urban infrastructure and access to services, have similar amenities, are subject to the same urban 

planning parameters, and have the same topography, among other common characteristics. 

The stochastic errors become spatially autocorrelated if this spatial dependence is not incorporated into 

classical regression models. For example, suppose important locational explanatory variables are omitted in 

the classical regression model (specification error) or are insufficient to explain the observed price behavior. 

In that case, the prices of properties in more affluent regions may exhibit positive residuals correlated with 

those of other properties in similar and nearby regions. At the same time, properties in poorer areas would 

show negative residuals that correlate with other properties in adjacent regions. This is quite evident with the 

elaboration of residual maps and the use of clustering techniques or the application of the LISA (Local 

Indicators of Spatial Association) index (ANSELIN, 1995). With spatial dependence, the assumption of 

exogeneity is violated, meaning that stochastic errors cannot be correlated with the explanatory variables 

(GOLGHER, 2015). 

 

𝐸[ ϵ ∣ 𝑋 ] = 0 (1) 

 

It is worth noting that this violation results in a harmful and undesirable effect in mass appraisals for tax 

purposes: fiscal regressivity, in which properties with lower assessed values end up paying a proportionally 

higher property tax than those with higher values.  

Spatial heterogeneity can lead to heteroscedasticity, where the variance of errors varies according to 

geographical location. Its concept is linked to Goodchild's Second Law of Geography (ALMEIDA, 2012; 

GOODCHILD, 2004), which can be understood as the presence of a specific stability in the behavior of 

variables in a context of uneven spatial structure due to historical economic development of the locations or 
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due to externalities. In other words, in the real estate market context, the estimators of explanatory variables 

for price behavior in a particular region may vary in sign and intensity from one locality to another. For 

instance, proximity to the beach in coastal cities may add more value to properties in those areas than to 

those farther from the coast; the effect of the "corner lot" variable may be more significant in commercial 

areas than in residential ones; land plots with suitable dimensions for real estate development may have a 

considerable premium in upscale regions with a shortage of vacant lots compared to the other areas where 

there is an abundance of them. Moreover, positive externalities, such as the construction of a shopping 

center, the revitalization of an urban park, or an increase in the exploitation index due to changes in urban 

legislation, impact not only the properties directly affected but also spill over their effects beyond (spillover). 

Conversely, the increase in crime in an area or air and noise pollution caused by opening a new expressway 

near residential areas are examples of negative externalities whose spatial effects need to be known in 

advance in modeling. However, Golgher (2015) emphasizes that non-spatial econometric techniques can 

also address heteroscedasticity. 

 

3.2. SPATIAL WEIGHT MATRIX 

 

Through the methodology developed by Anselin (1988), the spatial econometrics approach indicates 

that a spatial weight matrix (W) must be defined beforehand. The W matrix will be included in the regression 

model to capture the spatial interdependence between the various geographic units of analysis (in this case, 

between the sample points of property locations). 

Basically, spatial weight matrices come in binary neighborhood (or binary contiguity) and distance 

matrices. Contiguity matrices can consider neighboring observations as those that only share borders (rook) 

or those that share vertices (queen). These matrices equally weigh the values of the found neighbors without 

considering the distances between them. Additionally, contiguity matrices can be expanded to include higher 

orders, i.e., not only immediate neighbors but neighbors of neighbors, allowing for a more comprehensive 

analysis of spatial interactions at different levels of proximity. In property appraisals, represented by points 

(and not polygons), contiguity matrices are constructed by polygons generated by some tessellation process, 

such as Voronoi or Delaunay triangulation. 

Distance matrices, on the other hand, weigh the influence of neighbors based on fixed distance or "k-

nearest neighbors." In the first case, a maximum contagion distance is defined, beyond which there is no 

neighborhood relationship; for observations within this distance, the neighborhood relationship is weighted 

by the inverse distance or higher-order negative exponentials of this distance. In the second case, weights 

are defined for a fixed number of neighbors, and there is the possibility of weighting them by negative 

exponentials. 

According to Anselin (1988), a matrix that best represents the spatial dependence of the studied 

phenomenon should be chosen. According to Corrado and Fingleton (2012), the various criteria for 

constructing the W matrix directly impact the model results. Defining them appropriately is a sine qua non 

condition for a good spatial model, as will be seen later in the "Results" section. An inadequate W matrix can 

leave unexplained residual autocorrelation, violating the regression model's assumptions (KOBYLIŃSKA, 

2021). 

 

3.3. MEASUREMENT OF SPATIAL AUTOCORRELATION 

 

3.3.1. Global Moran's I Index 

 

The Moran's I index is the primary indicator of global spatial autocorrelation used in spatial regression 

models. The Moran's I index is given by: 

 
 

𝐼  =  
𝑛  ∑ ∑ (𝑤𝑖𝑗  (𝑥𝑖   −  𝑥̅)(𝑥𝑗   −  𝑥̅))𝑗  𝑖  

(∑ ∑ 𝑤𝑖𝑗𝑗𝑖 ) (∑ (𝑥𝑖   −  𝑥̅)2
𝑖 ) 

 

(2) 

 
 

Where n is the number of observations; 𝑤𝑖𝑗 is the element of the spatial weight matrix W; 𝑥𝑖 and 𝑥𝑗 are 

the values of the observations at location i and location j; 𝑥̅ is the mean of the observations; ∑ ∑ 𝑤𝑖𝑗𝑗𝑖  is the 

sum of all spatial weights, which, in the case of W being row-standardized, is equal to n. 
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Positive values of Moran's I indicate positive autocorrelation, while negative values indicate negative 

autocorrelation. Values close to zero indicate the absence of autocorrelation. A better interpretation of the 

index can be obtained through the Moran scatterplot, which is a scatter plot where the abscissa represents 

the values of the variable xxx, normalized about the mean: 

 

𝑧𝑖 = 𝑥𝑖 − 𝑥̅ (3) 

 

and the value of this lagged variable represents the ordinate, that is, the weighting of the values of this same 

variable for the neighbors of 𝑥𝑖 by the spatial weight matrix W, also normalized: 

 

𝑊𝑧𝑖  = ∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥̅)

𝑗

 (4) 

 

The slope of the regression line fitted to the Moran scatterplot corresponds to the value of the index 

itself (Figure 1). In the first and second quadrants, we observe positive spatial autocorrelation, as points with 

high values have spatial contributions from neighbors also with high values (1st quadrant). Similarly, low-

value points have neighbors with low values (2nd quadrant). In the third and fourth quadrants, we observe 

negative spatial autocorrelation, as points with high values have spatial contributions from neighbors with low 

values (3rd quadrant). Similarly, low-value points have neighbors with high values (4th quadrant). 

 

 
Figure 1 - Moran's I Scatterplot 

 

After calculating Moran's I index, the statistical significance of the observed spatial autocorrelation must 

be evaluated. This is achieved through an iterative process in which the observations are permuted while 

keeping the spatial weight matrix unchanged. The purpose of each permutation is to create a spatial 

distribution of the data such that the initially observed spatial autocorrelation is eliminated. With their 

respective calculated indices, the various permutations generate a reference distribution of Moran's I 

statistics under the null hypothesis of no spatial autocorrelation. By comparing the observed statistic (the 

calculated index value) with the null distribution, one can derive a statistical significance assessment of the 

observed spatial autocorrelation. 

 

3.4. SPATIAL MODELS 

 

According to Dantas (2003), the spatial regression model aims to formally analyze spatial interaction in 

cross-sectional data models in studies involving geographic units. Given the expected spatial correlation 

between the dependent variable (unit price), its explanatory variables, and/or its residuals, this methodology 

has been widely used in real estate market analysis. An appropriate spatial model incorporates such effects 

into the regression equation for each situation. 
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3.4.1. Spatial Lag Model (SAR) 

 

The spatial lag model, also known as the Spatial Autoregressive Model (SAR) and by the acronym SLM, 

standing for Spatial Lag Model, serves a specific purpose. The SAR model is used to correct distortions 

when the dependent variable has spatial autocorrelation and follows the structure shown in equation (5) in its 

matrix form: 

 

𝐲 =  𝜌𝐖𝐲 +  𝐗 ∙ 𝛃 + 𝛆,                 𝛆 ~ 𝑁(0, 𝜎2𝐈𝐧) (5) 

 

Where 𝐲 is the vector of values of the dependent variable; 𝜌 is the spatial autoregressive coefficient; 𝐖 

is the spatial weight matrix; 𝐗 is the matrix of explanatory variables; 𝛃 is the vector of coefficients of the 

explanatory variables, and 𝛆 is the vector of error terms, normally distributed with a mean of zero and 

variance 𝜎2. Rearranging equation (5), we have: 

 

𝐲 = (𝐈 − 𝜌𝐖)−1 (𝐗 ∙ 𝛃 + 𝛆),         𝛆 ~ 𝑁(0, 𝜎2𝐈𝐧) (6) 

 

Where 𝐈 is the identity matrix. 

 

3.4.2. Spatial Error Model (SEM) 

 

The spatial error model (Spatial Error Model – SEM) is used to correct distortions when there is spatial 

autocorrelation of the errors and follows the structure shown in equation (7): 

 

𝒚 =  𝐗 ∙ 𝛃 + 𝐮 ,  𝐮 =  𝜆𝐖 ∙ 𝐮 +  𝛆,              𝛆 ~ 𝑁(0, 𝜎2𝐈𝐧) (7) 

 

Where 𝒚 is the vector of values of the dependent variable; 𝜆 is the spatial autocorrelation coefficient of 

the errors; 𝐖 is the spatial weight matrix; 𝐗 is the matrix of explanatory variables; 𝛃 is the vector of 

coefficients of the explanatory variables; 𝐮 is the vector of error terms, which is spatially autocorrelated, and 

𝛆 is the vector of error terms, normally distributed with a mean of zero and variance 𝜎2. The equation (7) can 

also be written as: 

 

𝒚 =  𝐗 ∙ 𝛃 + (𝐈 − 𝜆𝐖)−1 ∙ 𝛆 (8) 

 

Where 𝐈 is the identity matrix. 

 

3.4.3. Spatial Autocorrelation Combined Model (SAC) 

 

The spatial autocorrelation combined model, SAC, combines elements of the spatial lag model (SAR) 

and the spatial error model (SEM). It is also known as the Kelejian-Prucha Model, named after researchers 

Harry Kelejian and Ingmar Prucha, who significantly contributed to developing and applying this type of 

spatial model. Additionally, it is referred to as SARMA (Spatial Autoregressive Moving Average Model) or 

SARAR (Spatial Autoregressive and Autoregressive Error Model). The representation of this model is given 

by equation (9): 

 

𝐲 =  𝜌𝐖𝐲 +  𝐗 ∙ 𝛃 + 𝜆𝐖𝐮 + 𝛆 ,          𝛆 ~ 𝑁(0, 𝜎2𝐈𝐧) (9) 

 

Rearranging equation (9), we have: 

 

𝒚 =  (𝐈 − 𝜌𝐖)−1 ∙ 𝐗 ∙ 𝛃 + (𝐈 − 𝜆𝐖)−1 ∙ 𝛆 (10) 

 

3.4.4. Lagrange Multipliers (LM) 

 

The global Moran's I index does not indicate which spatial model is the most suitable. For this purpose, 

we need to calculate the LM tests of Lagrange multipliers, which refer to the spatially lagged dependent 

variable and the spatially lagged error, or both (combined). The LM tests are hypothesis tests that follow a 

chi-squared distribution with one degree of freedom. The null hypothesis for the LM (error) test is the 
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absence of spatial autocorrelation in the error term (𝜆 = 0). For the LM (lag) test, it is the absence of spatial 

lag in the dependent variable (𝜌 = 0). 

According to the expressions below, both tests can be calculated using the residuals from the 

multivariate linear regression with OLS estimation. 
 

LMλ(erro) =

[
𝐞′𝐖𝑒

(𝜎̂𝑀𝐿)2

𝑛

]

[𝑡𝑟(𝐖2 + 𝐖′𝐖)]
≈ 𝑋² 

(11) 

 

LMρ(defasagem) =
[

𝑒′𝐖𝑒

(𝜎̂𝑀𝐿)2]
²

[(𝐖 𝐗 𝛃)′
(𝐌𝐖 𝐗 𝛃)

(𝜎̂𝑀𝐿)2 + 𝑡𝑟(𝐖2 + 𝐖′𝐖)]
≈ 𝑋² 

(12) 

 

Where 𝐞 is the vector of residuals obtained by the ordinary least squares (OLS) method; W is the spatial 

weight matrix (W′ is the transposed matrix); 𝜎̂𝑀𝐿 =
𝑒′∙ 𝑒

𝑛
 is the maximum likelihood estimate of the variance of 

the model y = Xβ + ε; n is the number of sample data points; tr is the trace operator of the matrix; 𝑦 is the 

observation vector of the dependent variable; 𝑋 is the observation matrix of the independent variables; 𝛽 is 

the parameter vector of the independent variables (OLS model);  𝐌 =  𝐈 −  𝐗 ∙ (𝐗′ ∙ 𝐗) − 𝐈 ∙ 𝐗′, where 𝐈 is the 

identity matrix. 

Anselin and Rey (2014) comment that the classic  LMρ (lag) test is also sensitive to the presence of 

spatial autocorrelation in the errors (𝜆 ≠ 0). Similarly, the LMλ test is sensitive to the presence of spatial 

autocorrelation in the dependent variable itself (𝜌 ≠ 0). Thus, these authors suggest performing new tests 

(robust LMρ
∗  and LMλ

∗) that corrects the behavior. As seen in section 4.2.2, the robust tests will be used to 

distinguish the best spatial econometric model when both classic tests, LMρ and LMλ, are significant. 

 

3.4.5. Model Selection Criteria for Spatial Regression 

 

Once spatial dependence in the model has been identified, the appropriate spatial regression model 

(error or lag) must be chosen to address the problem. Anselin and Rey (2014) established a practical 

methodology based on various studies to help decide which model will perform better in most situations. The 

tests are conducted using the residuals obtained from the classical model and the predicted values for the 

dependent variable, both associated with the chosen spatial weight matrices W. 

According to the authors, the first step is to analyze the LMρ and LMλ statistics, which follow a chi-

squared distribution, where the null hypothesis indicates the absence of spatial autocorrelation. If the null 

hypothesis of no spatial dependence is accepted for both the error and the dependent variable, the classical 

regression model with OLS estimates should be retained. 

On the other hand, if only one of the statistics is significant, the model indicated by the significant test 

should be used: the Spatial Error Model (SEM) for the LMλ (error) statistic, or the Spatial Lag Model (SAR) 

for the LMρ (lag) statistic. Finally, suppose both statistics are significant, indicating the simultaneous 

presence of spatial autocorrelation, the robust tests LMρ
∗  and LMλ

∗ are compared. The model with the 

significant test, or if both are significant, the model with the higher test statistic value, should be chosen. 

Figure 2 summarizes the process to be followed. 

 

 
Figure 2 - Schematic Flowchart for Selecting the Spatial Regression Model (with adaptations Anselin and Rey, 2014). 
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3.4.6. Marginal Contributions of Explanatory Variables in Spatial Models 

 

To fully understand the methodology proposed in this article, it is essential to comprehend how each 

explanatory variable contributes to forming the dependent variable values. In other words, in the present 

context, it is of interest to determine how certain variables, such as land area, property frontage, the number 

of frontages, the exploitation index, the presence of urban infrastructure, among others, influence the 

formation of the observed unit price of the land while keeping all other variables fixed (ceteris paribus 

condition). 

It's important to understand that not all spatial models can be interpreted using the same approach as 

classical regression models. In classical regression, we calculate simple partial derivatives to analyze how 

the dependent variable is affected. This approach assumes that each observation is independent, so a 

change in an explanatory variable for one observation affects only the dependent variable for that specific 

observation. However, with spatial dependence, this isn't the case. A change in one observation also affects 

others and feeds back into the original observation (GOLGHER, 2015). 

Consider a SAR model given by equation (6). The derivative of y with respect to an independent 

variable xk is given by: 

 

∂𝑦

∂𝑥𝑘

= (𝐈 − ρ𝐖)−1β𝑘 
(13) 

 

At the outset, it is observed that the partial derivative has a matrix that multiplies the coefficient β𝑘, 

ruling out the possibility of simply interpreting β𝑘 as the marginal contribution of the variable xk to y. This 

matrix is known as the matrix of spatial impacts (ANSELIN, 1988) and propagates the spatial effects that 

arise from the neighborhood network established by the chosen spatial weights matrix (W). According to 

Golgher and Voss (2016), to obtain the effects of a variable xk on y in a SAR or SAC model, one must divide 

these effects into two: 

• Direct effects: represent the expected average change in the dependent variable for all observations 

in a specific region due to a one-unit increase in one particular explanatory variable in that same region. 

They are calculated by the average of the sum of the elements on the main diagonal of the matrix of spatial 

impacts ((𝐈 − 𝜌𝐖)−1). 

• Indirect effects: represent the changes in the dependent variable of a specific region resulting from a 

one-unit increase in an explanatory variable in another region. The average of the elements off the diagonal 

of the matrix of spatial impacts calculates them. 

In the context of this work, direct effects are the expected average changes in the price of a property 

due to a one-unit change in a specific characteristic of that same property, such as an increase of 1m² in the 

land area, an increase in frontage, etc. Indirect effects are the changes in the price of a property due to a 

one-unit change in a specific characteristic of properties in other locations. For example, a significant 

improvement in the infrastructure of a nearby area may increase the value of properties in adjacent areas. 

The sum of direct and indirect effects will be used to infer the homogenization factors of the explanatory 

variables of interest in this work, as seen in the following sections. 

 

4. METODOLOGY 

 

4.1. DATA 

 

The sample consisted of 4,426 plots, with 18m² to 20,000m², geographically distributed randomly 

throughout the municipality's territorial area, covering the 121 neighborhoods, collected between 2019 and 

2024. The sample data comes from three sources: (i) market offers collected from the Fortaleza Real Estate 

Observatory (OMI) (SEFIN, 2024); (ii) base values for ITBI calculations; and (iii) completed transactions. 

76.2% of the data are listing prices, 12.9% are transactions, and 10.9% are ITBI guides. Data in the exact 

geographic location were eliminated, retaining only the most recent information. Extremely discrepant 

outliers were also removed during classical regression modeling, keeping the sample for all models. 

It is observed that the highest unit prices are in the northern region of the municipality, particularly in the 

more touristic neighborhoods such as Meireles and Aldeota. In an initial exploratory data analysis, a positive 

spatial autocorrelation of unit prices in this region was observed using the spatial weights matrix with a 
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queen contiguity criterion and applying the Local Spatial Association Index (LISA). This indicates that the unit 

price of a plot in this area is positively influenced by the high unit prices of its neighbors. This information, 

shown in red points in Figure 4, was statistically significant, as indicated by the map in Figure 3. 

Properties generally have the lowest unit prices in the peripheral regions south of the municipality, 

where Bom Jardim, Siqueira, and Jangurussu neighborhoods are located. In this region, a positive spatial 

autocorrelation was also observed, indicating that the unit price of a plot tends to be influenced by the low 

prices of neighboring plots. This relationship, statistically significant (Figure 3), is highlighted by the blue 

points on the map in Figure 4. 

Regions with gray points on both maps indicate statistically insignificant spatial autocorrelation values. 

This means that plots in these locations do not tend to experience significant influences from the prices of 

neighboring plots. 

 
Figure 1 - LISA Significance Map 

 

4.2. LAND UNIT PRICES MODELING 

 
Figure 2 - LISA Clustering Map 

 

4.2.1. Classic Model 

 

The initial model was estimated using the ordinary least squares method with the natural logarithm of 

the unit price as the dependent variable. In total, 28 explanatory variables, including a second-degree trend 

polynomial, were used to capture the observed gradients and trends in large-scale prices. Many explanatory 

variables can be considered spatial proxies obtained through geoprocessing operations in geographic 

information systems (GIS). The generic regression model is shown in equation (14). 

 

ln (𝑃𝑢𝑛𝑖𝑡) = 𝛽0 + 𝛽1(𝑥) + 𝛽2(𝑦) + 𝛽3(𝑥²) + 𝛽4(𝑥𝑦) + 𝛽5(𝑙𝑜𝑡𝑐𝑜𝑛𝑑) + 𝛽6(𝑛𝑢𝑚𝑓𝑟) + 𝛽7(𝑒𝑠𝑞)
+ 𝛽8(𝑓_𝑖𝑛𝑐) + 𝛽9(𝑡𝑒𝑠𝑡) + 𝛽10(ln[𝑎𝑟𝑒𝑎]) + 𝛽11(𝑝𝑣𝑎𝑐𝑝) + 𝛽12(𝑔𝑝) + 𝛽13(ln [𝑟𝑒𝑛𝑑𝑎])
+ 𝛽14(𝑑𝑣) + 𝛽15(ln [𝑑𝑠𝑐𝑜𝑚]) + 𝛽16(𝑎𝑐𝑎𝑠𝑎𝑚𝑒𝑑) + 𝛽17(𝑖𝑎𝑚𝑎𝑥𝑒𝑞) + 𝛽18(𝑝𝑧𝑝𝑎1)
+ 𝛽19(𝑑𝑖𝑠𝑡𝑝𝑣) + 𝛽20(ln [𝑑𝑖𝑠𝑡𝑏𝑚]) + 𝛽21(ln [𝑑𝑖𝑠𝑡𝑣𝑝]) + 𝛽22(𝑎2020) + 𝛽23(𝑎2021)
+ 𝛽24(𝑎2022) + 𝛽25(𝑎2023) + 𝛽26(𝑎2024) + 𝛽27(𝑡𝑟) + 𝛽28(𝑜𝑓) + 𝜀 

 (14) 

 

Where Punit is the dependent variable, unit price, in R$/m²; x, y, x², and xy are continuous quantitative 

variables, where x and y represent the UTM coordinates (EPSG 31984) of the plot centroids (divided by 

10,000) and normalized relative to the center of the municipality; they form the trend polynomial based on 

the data's location; lotcond is a dichotomous variable representing the plot's location, indicating whether it 

belongs to a gated community (1) or not (0); numfr is a discrete quantitative variable indicating the number of 

frontages the plot has; esq is a dichotomous variable representing the plot's location, indicating whether the 

property is on a corner (1) or not (0); f_inc is a dichotomous variable indicating whether the plot is eligible for 

incorporation, i.e., if it has a land area greater than or equal to 750m²; test is a quantitative variable 

representing the length of the main frontage in meters (m); area is a quantitative variable considering the 

total area of the plot, in m²; pvacp is a dichotomous variable indicating whether the plot has concrete, 

cobblestone, or asphalt paving; gp is a dichotomous variable indicating whether there is a stormwater gallery 

on the plot (1) or not (0); renda is a macro location variable, represented by the average income of the head 

of the household, in minimum wages, adjusted to a trend surface constructed by kriging, based on average 
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income data of the household head in the census sector, provided by the Brazilian Institute of Geography 

and Statistics (IBGE) census (2010); dv is a continuous proxy variable representing the density of 

verticalization, using the concentration of vertical condominiums with elevators obtained by kernel 

interpolation with a quartic function of 200m radius relative to the plot centroid; dscom is a proxy variable 

representing the density of commercialization in the surroundings (500m radius from the plot centroid), 

weighted by the commercial built-up area obtained by quartic kernel; acasamed is a proxy variable 

representing interpolation by inverse distance weighting (IDW) within a 500m radius of the median built-up 

area of residential houses; iamaxeq is a quantitative proxy variable representing the maximum equivalent 

utilization index; pzpa1 is a quantitative proxy variable representing the percentage of preservation area in 

the water resources protection zone (ZPA1); distpv is a quantitative and continuous variable corresponding 

to the Euclidean distance from the plot to the nearest prime location; distbm is a quantitative proxy variable 

measuring the distance (m) between the centroids of the surveyed plots and Av. Beira Mar; distvp is a 

quantitative proxy variable representing the distance (m) from the plot centroid to the nearest main road 

(expressway, arterial I, arterial II, and collector); a2020, a2021, a2022, a2023, and a2024 represent binary 

encoding to indicate the time of data collection; tr and of are binary encoding variables indicating the 3 data 

sources; 𝛽𝑖 are the model parameters to be estimated, and 𝜀 are the random errors. 

 

4.2.2. Spatial Models 

 

After estimating the classical model, where only the explanatory variables significant at 10% were 

retained, 16 types of spatial weight matrices were tested, including (i) six contiguity matrices (rook of 1st, 

2nd, and 3rd orders and queen of 1st, 2nd, and 3rd orders), (ii) three k-nearest neighbors matrices (with 5, 

10, and 20 nearest neighbors), and (iii) seven distance matrices (inverse distance and inverse distance 

squared limited to 1,320m, and inverse distance with limitations of 500m, 800m, 1,500m, 2,000m, and 

3,000m). 

Lagrange multipliers tests were calculated using the classical regression model for each listed matrix to 

determine the most suitable spatial regression model according to Anselin's (2005) criterion. Subsequently, 

estimates were made for the most appropriate spatial models (SAR or SER), followed by calculating the 

global Moran's I index to assess the matrix's ability to capture all spatial dependence without leaving any 

residual autocorrelation in the errors. In cases where more than one model showed no autocorrelation, the 

one with the lowest Akaike Information Criterion (AIC) was chosen. Figure 5 illustrates the described 

methodology. 

 

 
Figure 5 - Flowchart of the methodology for selecting the most appropriate spatial model. 

 

4.3. HOMOGENIZATION FACTORS EXTRACTION 

 

With the resulting equation from the most appropriate spatial model and lowest AIC, the next step is 

determining the weights for each explanatory variable. To do this, the characteristics of the benchmark plot 

are projected for each independent variable. 

For establishing the benchmark plot, the characteristics of the most representative plot in the 

municipality were defined, considering the median values from the entire dataset of approximately 404,000 

plots. Descriptive statistics of the cadastral base of territorial properties were analyzed for each variable of 

interest. However, it is essential to note that the variables testada and area did not follow this methodology. 

Instead, values of 12m and 400m² were established, approximately corresponding to the cadastral base's 

third quartile (Q3). The main reason for these exceptions is that plots with only 7m of frontage and 187m² of 

area, which are the respective median values, are less attractive and consequently less valued in the 

municipal market. Using these values would introduce biases that could impair the analysis of the factors. 
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Considering the choice of the spatial lag model, the influence of an attribute's variation on the 

dependent variable unit price was determined by the sum of direct and indirect effects, as discussed in 

section 3.4.6. The total effect was interpreted as a coefficient of a classical regression model (CERINO et al., 

2022). Finally, the homogenization factor for each attribute was calculated, and its respective 

homogenization tables were prepared. 

 

5. RESULTS AND DISCUSSION 

 

Table 1 shows the models recommended for the various tested matrices based on the robust LM and 

LM* tests. Attention is drawn to the recommendation against using spatial models in the case of higher-order 

contiguity matrices (rook 2, rook 3, queen 2, and queen 3), which appears inconsistent given the presence of 

spatial autocorrelation in the observed prices as confirmed by the exploratory spatial analysis. 

 
Table 1 - Results of Lagrange Multiplier Tests for Each Spatial Weight Matrix. 

Weight Matrix 𝐋𝐌𝛌  p-value 𝐋𝐌𝛒  p-value 𝐋𝐌𝛌
∗ p-value 𝐋𝐌𝛒

∗ p-value 
Recommended 

model 

Rook 1 348.60 0.00% 352.94 0.00% 28.06 0.00% 32.40 0.00% SAR 

Rook 2 0.00 99.05% 1.12 28.90% 0.69 40.50% 1.82 17.76% OLS 

Rook 3 0.06 80.15% 0.79 37.51% 0.98 32.18% 1.71 19.16% OLS 

Queen 1 375.98 0.00% 373.87 0.00% 35.26 0.00% 33.15 0.00% SER 

Queen 2 0.17 68.44% 1.83 17.64% 0.28 59.98% 1.94 16.39% OLS 

Queen 3 0.94 33.17% 0.03 86.36% 1.83 17.63% 0.92 33.85% OLS 

k-NN 5 406.45 0.00% 365.08 0.00% 59.92 0.00% 18.55 0.00% SER 

k-NN 10 580.61 0.00% 491.55 0.00% 122.10 0.00% 33.04 0.00% SER 

k-NN 20 758.82 0.00% 535.58 0.00% 259.57 0.00% 36.33 0.00% SER 

1/d (1320m) 416.50 0.00% 362.51 0.00% 83.06 0.00% 29.07 0.00% SER 

1/d² (1320m) 295.82 0.00% 301.84 0.00% 18.45 0.00% 24.47 0.00% SAR 

1/d (500m) 0.11 73.49% 6.15 1.31% 2.06 15.07% 8.10 0.44% SAR 

1/d (800m) 0.54 46.30% 5.54 1.86% 0.72 39.67% 5.72 1.68% SAR 

1/d (1500m) 404.04 0.00% 341.19 0.00% 89.94 0.00% 27.08 0.00% SER 

1/d (2000m) 352.31 0.00% 280.47 0.00% 94.61 0.00% 22.77 0.00% SER 

1/d (3000m) 259.71 0.00% 194.25 0.00% 81.54 0.00% 16.08 0.01% SER 

 

The global Moran's I index was calculated on the new residuals for each recommended model. Based 

on this statistic, models that did not show statistical significance for spatial autocorrelation were selected, as 

shown in Table 2. Only the lag models with spatial weight matrices using inverse distance with contagion up 

to 500m and 800m met this criterion. The performance indicators used for the final selection were MAE, 

MAPE, RMSE, coefficient of determination (R²), and AIC. 

 
Table 2 – Performance Metrics and Global Moran's I Index Results for the Spatial Regression Residuals 

Modelo   Moran     p-value    MAE     MAPE     RMSE     R²     AIC   

SAR - Matriz Rook 1 0.07 0.00 322.48 30.41 606.73 0.66 65,198.45 

SAR - Matriz 1/d (500m) 0.00 0.28 331.25 31.52 618.75 0.64 65,361.70 

SAR - Matriz 1/d (800m) 0.00 0.36 331.11 31.53 618.93 0.64 65,364.16 

SAR - Matriz 1/d² (1320m) 0.10 0.00 321.73 30.29 605.54 0.66 65,182.09 

SER - Matriz Queen 1 0.15 0.00 332.17 31.56 621.64 0.64 65,400.54 

SER - Matriz k-NN (5) 0.16 0.00 332.18 31.53 621.40 0.64 65,397.27 

SER - Matriz k-NN (10) 0.13 0.00 332.54 31.62 621.18 0.64 65,394.38 

SER - Matriz k-NN (20) 0.11 0.00 333.61 31.81 621.95 0.64 65,404.65 

SER - Matriz 1/d (1320m) 0.09 0.00 334.47 32.00 621.38 0.64 65,397.02 

SER - Matriz 1/d (1500m) 0.09 0.00 334.95 32.05 621.63 0.64 65,400.39 

SER - Matriz 1/d (2000m) 0.07 0.00 336.12 32.20 621.89 0.64 65,403.92 

SER - Matriz 1/d (3000m) 0.05 0.00 336.96 32.39 621.03 0.64 65,392.39 

 

Figure 6 shows the Moran's I index almost as a horizontal line (index calculated close to zero). This 

implies that the residuals of the SAR spatial regression are randomly dispersed (absence of spatial 
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autocorrelation), indicating that the chosen matrix has managed to capture all the spatial dependence 

observed in the prices. 

 

 
Figure 6 - Scatter Plot of Moran's I Spread for the SAR Model Residuals Using the 1/d (500m) Matrix 

 

In analyzing the parameters, we calculated the direct and indirect effects, as shown in Table 3. The 

indirect effects, which reflect a property's unit price's influence on neighboring properties' prices, accounted 

for 5.04% of the total effect. The ratio between the indirect effect and the total effect determined this 

percentage. 

It is essential to highlight that the direct effect corresponds to the coefficient value associated with the 

specific attribute. These coefficients for both the spatial lag and the classical models are detailed in Table 4. 

The values were significant and logical, considering the expected positive or negative signs. For example, 

attributes related to distance, such as Avenida Beira Mar (a major tourist road in the Meireles neighborhood), 

prime locations, and main roads, exhibited negative signs, as anticipated. This is because plots closer to 

these areas tend to be more valuable. Similarly, the area attribute also showed a negative sign, indicating 

that larger plots generally have lower unit prices, a phenomenon explained by the law of diminishing 

marginal utility. Although this relationship does not uniformly apply to all area ranges studied, it is generally 

valid in large samples. The significance of the spatial autoregressive coefficient at 5% (ρ) is also noteworthy. 

Another attribute with a negative sign is pzpa1, which indicates the percentage of the plot located in a 

preservation area where construction is not allowed. As expected, the unit price of the property tends to 

increase as the proportion of this preservation area decreases. Other variables, such as frontage, corner 

location, commercial density, and paving, exhibited positive signs, demonstrating a direct relationship 

between these explanatory variables and the unit price of the property. 

 
Table 3 – SAR Model Effects Using 1/d (500m) Matrix 

Variável 
Effects 

Direct Indirect Total 

lotcond     0.5400      0.0287      0.5687  

numfr     0.0537      0.0029      0.0566  

esq     0.0456      0.0024      0.0481  

test     0.0023      0.0001      0.0024  

area – 0.0878  – 0.0047  – 0.0924  

pvacp     0.1022      0.0054      0.1076  

gp     0.0991      0.0053      0.1043  

iamaxeq     0.0928      0.0049      0.0977  

pzpa1 – 0.2610  – 0.0139  – 0.2748  

 
Table 4 – Comparison of Parameter Estimates Between the OLS and the SAR Model Using the 1/d (500m) Matrix and Total Effect 

 

 Classic (OLS) SAR (matrix 1/d 500m) Spillover effect incorporation 

Variável Coeficient Coeficient Total effect 

CONSTANT 7.99313 7.65341  

x_ 0.03312 0.03357 0.03536 
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y_ 0.10751 0.10788 0.11364 

x2_ -0.22905 -0.22859 -0.24078 

xy_ -0.27392 -0.27304 -0.28761 

lotcond 0.54341 0.53991 0.56870 

numfr 0.05318 0.05370 0.05656 

esq 0.04661 0.04564 0.04807 

f_inc 0.07903 0.07753 0.08167 

test 0.00230 0.00230 0.00242 

ln_area -0.08828 -0.08774 -0.09242 

pvacp 0.10200 0.10216 0.10761 

gp 0.09916 0.09903 0.10432 

ln_renda 0.18767 0.18798 0.19800 

dv 0.72383 0.72500 0.76366 

ln_dscom 0.11313 0.11331 0.11935 

acasamed 0.85567 0.85200 0.89744 

iamaxeq 0.09269 0.09275 0.09770 

pzpa1 -0.25977 -0.2609 -0.27481 

distpv -0.00018 -0.00018 -0.00019 

ln_distbm -0.18718 -0.18691 -0.19688 

ln_distvp -0.10777 -0.10774 -0.11349 

a2020 0.07249 0.07162 0.07544 

a2021 0.10779 0.10867 0.11447 

a2022 0.19005 0.19022 0.20036 

a2023 0.29844 0.29677 0.31260 

a2024 0.30775 0.30593 0.32224 

tr 0.10026 0.10140 0.10680 

of 0.27999 0.28044 0.29540 

𝜌 
 

0.05063  

 

In determining factors for attributes with dichotomous or discrete quantitative variables, each possible 

scenario receives a calculated and distinct factor. For the esquina attribute, for instance, assuming the 

standard case where the property is mid-block with a corner variable value of zero, the factor is calculated 

using the equation (15). 

 

𝑓𝑒𝑠𝑞(1) = 𝑒(𝑡𝑜𝑡𝑎𝑙 𝑒𝑓𝑓.)[𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑑 − 𝑝𝑎𝑟𝑎𝑑𝑖𝑔𝑚] = 𝑒0.0481[1−0] = 1.05 (15) 

 

Since the dependent variable is transformed using the natural logarithm, for dichotomous explanatory 

variables, the total effect directly indicates the percentage variation the dependent variable undergoes due to 

changes in the explanatory attribute. In this case, it is expected that the unit price of a corner property is, on 

average, 5% higher than that of a non-corner property. For continuous variables, the factor for each attribute 

is calculated by applying the equation with values from the assessed lot and the paradigm lot. In the specific 

case of the area attribute, which was transformed using the natural logarithm, the calculation follows 

equation (16), illustrating the factor calculation for a lot with an area of 1,125m², simplified by the fact that the 

natural logarithm appears in the exponent of Euler's number. 

 

𝑓𝑎𝑟𝑒𝑎(1.125𝑚2) = 𝑒(𝑡𝑜𝑡𝑎𝑙 𝑒𝑓𝑓.)[ln (𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑑)−ln ( 𝑝𝑎𝑟𝑎𝑑𝑖𝑔𝑚)] = (
𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑑

𝑝𝑎𝑟𝑎𝑑𝑖𝑔𝑚
)

𝑡𝑜𝑡𝑎𝑙 𝑒𝑓𝑓.

= (
1125

400
)

−0.0924

= 0.91 
(16) 

 

For the other continuous variables, which were not transformed, such as test and pzpa1, the factor is 

calculated according to equation (17), which demonstrates the calculation of the test factor for a lot with a 

30m frontage. 

 

𝑓𝑡𝑒𝑠𝑡(30𝑚) = 𝑒( 𝑡𝑜𝑡𝑎𝑙 𝑒𝑓𝑓.)[ (𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑑)− (paradigm)] = 𝑒(0.00242)[ (30)− (12)] = 1.04 (17) 
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6. CONCLUSIONS 

 

This study presented an innovative methodological approach for the mass appraisal of urban land, 

utilizing spatial econometrics techniques, and demonstrated its applicability and effectiveness in the context 

of the Municipality of Fortaleza. Incorporating spatial weight matrices, Lagrange multiplier tests, and spatial 

regression models proved crucial for understanding and capturing the spatial structure of the observed land 

prices. The use of different types of spatial weight matrices and the subsequent selection of the most 

appropriate spatial model significantly impacted minimizing residual autocorrelation, as evidenced by 

applying the global Moran’s I index, but only for some preselected spatial weight matrices. This highlights the 

importance of carefully selecting the spatial weight matrix to ensure the accuracy of mass appraisal models. 

The study also emphasized the importance of extracting homogenization factors using a more rigorous 

scientific approach. By extracting these factors from the SAR spatial model, considering both direct and 

indirect spatial effects, it was possible to provide more refined adjustments to the assessed land values, 

considering not only the individual characteristics of each lot but also the impact of their spatial attributes. 

Using "homogenization factors" for lots in property appraisal through spatial regression proves a viable 

methodology for simplifying mass appraisals and developing homogenization tables by scientific methods. 

The estimated factors represent a price variation concerning an adopted paradigm lot that is representative 

of the existing lots in the municipality. This approach adjusts land prices more fairly and allows for more 

equitable taxation, better reflecting price variations due to locational and contextual factors. 

However, this study has some limitations despite the methodological advances and significant practical 

implications. Although it is an established method for mass property appraisal, it is essential to note that 

applying factors for homogenization or projection of values based on attribute variation about a paradigm lot 

in a large municipality like Fortaleza relies on a solid premise. This premise is that the variation in the studied 

attributes impacts the unit price in the same way for different regions of the city and different economic 

classes, which may not be the case. Additionally, the dependence on the availability and quality of 

georeferenced data and the subjectivity in choosing spatial weight matrices can influence the results. 

Finally, it is recommended that future research explore the application of these techniques in other 

municipalities and contexts, adapting the methodology to different data configurations and urban 

characteristics. This would further validate the proposed method and contribute to a deeper understanding of 

the applicability and limitations of econometric models. 
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APPENDIX 
 

Table 5 – Equations for area, frontage, and pzpa1 factors the factors 

Area factor Frontage factor Pzpa1 Factor 

(
𝐴𝑎𝑝𝑝

400
)

−0,0924

 𝑒(0,00242)[ (test𝑎𝑝𝑝)− (12)] 𝑒−0,27481[ (pzpa1𝑎𝑝𝑝)− (0)] 

Where: 
𝐴𝑎𝑝𝑝 is the area of the appraised property 

(m²). 

Where: 
𝑡𝑒𝑠𝑡𝑎𝑝𝑝 is the front of the appraised 

property (m) 

Where: 
𝑝𝑧𝑝𝑎1𝑎𝑝𝑝 is the proportion of preservation 

area of the assessed property 

 
 

Table 6 - Paving, corner, storm drain and condominium factor 

Value 

Paving Factor 
(pvacp) 

Corner Factor 
Stormwater  

Gallery Factor 
Condominium Factor 

0 (absence) 0.87 1.00 0.89 1.00 

1 (presence) 1.00 1.04 1.00 1.57 

 
 

 
Table 7 – Nº of frontages factor 

Nº of 
frontages 

Factor 

1 1.00 

2 1.05 

3 1.10 

4 1.16 

5 1.21 

6 or more 1.27 
 

 
Table 81 – Floor area ratio factor 

Legal land 
utilization 

index 
Factor 

From 0 to 1 0.72 

From 1 to 2 0.85 

From 2 to 3 1.00 

3 1.18 
 

 


